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1. Introduction 
The "domain" we chose was that of Cyber Security - specifically "Phishing" and the 
classification of a website's URL as one that points to a phishing or non-phishing website. 
Our dataset is a collection of features of various website URLs and whether they're 
indicative of a phishing website or not. This is represented by one of three values: -1 for 
"indicative of a phishing website", 0 for "suspicious" and 1 for "indicative of a non-phishing 
website". These features include classifiers like “having_IPhaving_IP_Address” (If an IP 
address is used as an alternative of the domain name in the URL, such as 
“http://125.98.3.123/fake.html”), “double_slash_redirecting” (examining where in the URL a 
“//” appears, as its position is indicative of if the URL is secure or not), etc.  
“Phishing” refers to the practice of sending fraudulent snippets of digital communication 
(SMS messages, emails, phone calls, etc.) with the purpose of inducing individuals into 
revealing sensitive personal information – be it anything from passwords to credit card 
numbers (phishing.org, n.d.). The main questions we’d be exploring in this report would be: 
“What features of a URL (if any) are the most useful for predicting if said URL points to a 
phishing website?”, as well as “What is the most effective model for predicting if a URL 
points towards a phishing website?”. From these questions, we aim to achieve the 
production of an array of effective AI models that can generalise our dataset to a high 
degree of accuracy – as well as figuring out what features are the most important for each 
model’s generalisation. The outputs we expect differ from model to model (the specific 
models we’re going to be using will be expanded on more in our “method” section), but the 
ideal accuracy for each will be anything above 90%.  
 
As said above, an initial run of our dataset showed that all features for each URL (or row) 
have been scored one of three ways; -1 for “indicative of a Phishing URL”, 0 for “suspicious” 
and 1 for “Indicative of a non-phishing URL”. We found that “0” didn’t appear nearly as much 
as “-1” or “1” (due to this, we’ll investigate what removing “0” and replacing it with “-1” will do 

for our model’s accuracy), and no 0’s 
were present in the “results” column. We 
found that out of the 11055 entries 
present in the dataset, 56% were classed 
as “non-phishing” whilst 44% were 
classed as “phishing”. We took this as a 
good sign, as a close to equal result 
dataset wouldn’t present many 
challenges in terms of biases/skews. 
We also looked through our dataset for 
any missing values, or repeating rows; 

we found our data contained neither “NaN”/Non-applicable data (essentially any data that 
doesn’t fit into the 1, 0, -1 scoring system), nor any repeating/duplicate entries (I.e. rows). 
Looking through each feature individually (by way of excel data manipulation tools and 
bolstered by the ‘.value_counts()’ function) we found that the most important feature for 
classifying something as “non-phishing” was “having_sub_domain” (whether or not the URL 
pointed to a website under a sub-domain) – out of the 6157 total URLs classified as a non-
phishing website, 5630 were scored as “indicative of a non-phishing website”. Adversely, all 
the 4898 total URLs classified as phishing were scored as “indicative of a phishing website” 
in the “double_slash_redirecting” feature. Subsequently, we’ll focus on how the exclusion of 
these two features contribute to our models’ accuracy.  
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2. Method 
One of the methods we decided to use that allows for the solving of regression and 
classification problems is known as K-Nearest Neighbor (KNN). KNN includes advantages 
such as the implementation being easy and quite straightforward. Additionally, a model prior 
to implementation isn't required to be built, thus not needing to tune several parameters or 
determine further assumptions. KNN is also quite versatile as it can be used for data that is 
either regression or classification. However, one fall back to this model is its computation 
time seems to be proportional to the number of features that is acting on. The model will 
have access to our phishing dataset which would ultimately use it output a result. In this 
case the model would analyze a new piece of data input and look at its surroundings data to 
produce a result - i.e, is it phishing or not. For this model the dataset will be kept in its raw 
form and will analyze the different columns whilst initiating a target, in this case ‘result’. The 
data will need to ensure it is ‘fitted’ correctly to its data, meaning the line of best fit should 
run through the data as opposed to it being spread and omitted as a whole. Finally, when 
the code is tested a prediction table will be displayed and the accuracy will also be shown. 
Judging by the accuracy we could conclude whether the model is ideal for the dataset and 
can be used to predict whether a case is phishing or not.   
 
Random Forest is another supervised machine learning algorithm which expands and 
combines numerous decision trees essentially creating a ‘forest’. Once again, this model can 
be used for both regression and classification problems. Some advantages include its 
efficiency, simplicity (especially users that are beginners to SML and modelling), accuracy 
and versatility. A drawback to random forest can be its need for mass amount of memory 
(thus resulting in a large computation time). Since it uses a variety of decision trees much 
more memory is required thus decreasing its speed. In conclusion although it is slow it 
produces increased accuracy in its results. For our project we will have the model take in the 
phishing dataset and select all columns aside from the target (‘result’). Unlike KNN, Random 
Forest will take into account all pieces of data. Using this, the model should be able to 
calculate whether the case is phishing or not. Once again, the model produces a line of best 
fit in accordance with the data. To evaluate this model, we will observe the accuracy, this 
well give us a clear indication of how useful the model is and much it can be relied on to 
create predictions   
 
The next supervised machine learning algorithm is Support Vector Machines (SVM) which 
we used for our classification dataset. There are a variety of advantages for SVM models. 
Firstly, it is able to establish the best separating hyperplane in order to submit an accurate 
prediction. It is also ideal for high dimensional data and is relatively memory efficient. Finally, 
as it is specialized for classification problems it integrates well with our dataset. 
Disadvantages can include that the model does not work very well with significantly bigger 
datasets. It may also prove to be not very accurate in comparison to other models as our 
data contains a large number of overlapping data points. The high margins will require 
numerous calculations to take place. The task of this model is to take into account two 
parameters to produce an output, ‘phishing’ / ‘not phishing’. From this task, we will be able to 
observe the effectiveness of the SVM model when tested against this large dataset. The 
dataset was prepared by searching for missing or corrupt values and removing them where 
applicable. We must also experiment with which kernel to use on the model. To evaluate this 
model, we will be assessing its accuracy against both our original dataset and our edited 
dataset (where all 0's have been replaced with -1's).  
 
Another model used in supervised learning is perceptron. It aids in solving classification 
problems and helps classify data that's been input. The advantage of perceptron is that it 
can help solve non-linear problems. It can work with both big and minimal datasets whilst 
having the accuracy remain constant. It can also rapidly produce a prediction after its 
training. For muti-layered perceptron models the computations may become quite time 
consuming - thus, we'll consider only using a single-layer perceptron. On top of this, being 



 4 

able to predict how the dependent variables affects an independent variable becomes quite 
tricky. In addition to the previous drawbacks, the model's ability to generalize depends 
heavily on the training’s quality/quantity. This model should be able to produce a high level 
of accuracy whilst predicting against our test set. To prepare the dataset for this model, we 
performed an initial run of the input values - perceptions are suited to large datasets so not 
much had to get cut down, we just had to ensure the dataset was clean (without 
missing/corrupt values). To evaluate this model, we'll have it perform it's training twice; once 
against the original dataset, and once against a dataset where all "0"s have been replaced 
with "-1"s - it's effectiveness will be evaluated against its ability to surpass our set success 
rate of 90%.  
 
Decision Trees used in supervised learning are very popular with classification problems as 
well as predictions again, being quite ideal for our chosen dataset. Decision trees can be 
compared to flow charts in the sense that a step-by-step procedure is taken before reaching 
the next appropriate node. Using decision trees is useful as minimal computation is required 
to produce a result. It is also suited to categorical variables which our dataset is consistent 
with. Some disadvantages can include common errors when there are several classes and 
limited training data. With our dataset we can assume there will be numerous branches as 
there are various characteristics. This model should be able to perform well with our feature-
rich dataset. From this model, we will be able to observe a decision tree being created that 
can generalize the data and make predictions with decent accuracy. We will also see how 
the accuracy of predictions is affected by using different hyperparameters such as gini and 
entropy splitting criteria. The dataset was prepared by dropping the id column as it is unique 
for every datapoint and checking for any missing values. To evaluate this model, we will 
generate confusion matrices to visualize the proportion of true predictions against false ones 
and make use of sklearn’s metrics library by outputting the accuracy score for each test.  
 
Naïve Bayes is another supervised machine learning algorithm used for a variety of 
classification problems. The advantage of naïve bayes is that it isn’t very complicated and is 
very quick in producing a result whilst working well with text classification. With a real-life 
example naïve bayes isn’t very ideal as features are not necessarily independent therefore 
making this algorithm less accurate. This model should be able to accurately predict whether 
a data sample is classed as a phishing website or not based on prior knowledge about the 
class label. From this model we will be able to observe predictions made “naively” with less 
regard to relations between features. The dataset was prepared by dropping the “id” column 
and our two most biased columns. Another training and testing process will be done with 
data that contains -1s replaced with 0 on all features. We have the option of two main 
variants of the model, Gaussian and Bernoulli. The latter being optimal for binary data and 
should produce optimal results. To evaluate this model, we will produce a confusion matrix 
and compare the accuracy of our results to our target of 90%. 
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3. Results 
 
Perceptron 
The perceptron model initially seemed most suited to our 
data due to its suitability to boolean values (unsw, n.d.) - our 
dataset is primarily binary values (1 representing a non-
phishing URL and -1 representing a phishing URL).  
We encoded our data by using all columns and features, 
splitting the test data and training data to a 1:4 ratio. Training 
this model pre-standardisation (standardisation being the 
process of converting data to a common format to enable 
users to process and analyse it (Sisense, n.d.)) only 
produced a 55% accuracy (see initial confusion matrix) - due 
to this, coupled with the performance of our other models, 
we've set our success criteria to any accuracy above 90%. 
However, once standardisation and "K-fold" cross validation 
(the exercise of training several machine learning models on 
subsets of the training data and evaluating their generalisation 
on the test data) were applied, accuracy rose to between 90% 
and 95% for each fold (see appropriate confusion matrix). 
Note that our "k" count (the number of subsets we used) was 
5, and raising that value yielded no significant increase in 
accuracy. Utilising this model against our edited dataset (i.e., 
replacing all 0’s with -1’s) doesn’t yield much difference in 
accuracy, just 1% less accurate. 
 
SVM 

The SVM model seemed one 
well suited to our data due to its suitability for classification - 
specifically high dimensionality data (Solarzano, 2019), which 
our dataset is. 
 We encoded our data by using all columns and features, 
splitting the test data and training data to a 1:4 ratio. 
Originally, we were using a 'linear' kernel on my entire 
dataset with a test sample of 50%. This only yielded a 55% 
accuracy, which we've found was mainly due to the size of 
our dataset; the SVM model is not suited to large datasets 
with too many overlapping features (Laparna, 2020), which 
unfortunately is a characteristic of our data. To combat this, 
we took a slice of our data (reducing 11055 items to 400), 
and re-ran the model with an 'rbf' (Radial Basis Function) 

kernel. The sliced data was initially a random sample of our 
entire dataset, but this greatly reduced our accuracy (making 
it more like our original 50%). To combat this, we took a slice 
of data that was more indicative of our complete dataset; the 
complete dataset’s final column (result) had a proportion of 
44:56 for 1 and -1 values respectively. The 400 entries we 
had selected had a proportion of 42:58 of the same values. As 
these are similar, we decided to press on with the 400 
selected values rather than the randomly selected values. 
This produced a model that had an 86 - 90% output accuracy 

(see appropriate confusion matrices). Again, we encoded 
our variables via dropping all columns bar "results" and using 
that as our X and using the results column as our Y (our 

Figure 1: Perceptron confusion matrix 
pre-standardisation 

Figure 2:Perceptron confusion matrix 
post-standardisation with validation 

Figure 3: SVM confusion matrix with a 
linear kernel 

Figure 4: SVM confusion matrix with an 
RBF kernel 
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Target). Utilising this model against our edited dataset (replacing 0’s with -1’s) further 
improved its accuracy, raising it from ~87% to >90%.  
 
K - Nearest Neighbor  
The k nearest neighbor model is ideal to display classified data. This model takes the data 
closest to the pointer and assigns a group to the variable based on 
the values nearest to it. During implementation we had set the KNN 
length to 12, this had produced a mean accuracy of 53.7%. As this 
result isn't very accurate, we decided to trial run different methods to 
increase accuracy. Firstly, we began by increasing the KNN length 
from 12 to 15. We thought by having more data, the machine would 
be able to take it into account several more factors to 
produce a greater accuracy, this in-fact worked as the 
accuracy had improved to 54.3%. We then decided to 
set the length to 17, seeing if the accuracy could improve 
even more. However, this decreased the accuracy by 0.2 
making it 54.1% in total. Thus, we concluded in keeping 
the length as 15, as it produced the highest accuracy. As 
our dataset consists of three possibilities 1 = ‘non-
phishing’ 0 = ‘maybe phishing’ and –1 = ‘phishing’, we thought it would be interesting to see 
whether limiting the possibilities to two could perhaps increase the accuracy. This gave us 
an accuracy of 54%, if the KNN length was 12 then this would have been quite an 
improvement - however since the length was set to 15 the accuracy had ultimately 
decreased. Finally, the last test made was to remove two features from the dataset being 
‘having_Sub_Domain’ and ‘double_slash_redirecting’. Overall producing an accuracy of 
53.4%, being the lowest, thus concluding that having a slightly higher KNN length can assist 
in producing the highest accuracy mean as well as highlight the importance of the 
aforementioned features in classifying a phishing/non-phishing URL.   
 
Random Forest  
Random forest model produces some of the highest accuracy figures in comparison to other 
models. This statement was proven to be true from my implementation and findings. Firstly, 
this model was implemented with the original dataset which produced an incredibly high 
accuracy being 96.3%. Similarly to the KNN model we wanted to test whether this accuracy 
could be increased further. We proceeded to test it with the dataset that omits ‘0’s. To our 
surprise this resulted in a slightly less accurate mean of 93.8%, implying that this model 
requires as much data in order to make an accurate verdict. Finally, we tested it against the 
dataset without the two features ‘having_Sub_Domain’ and ‘double_slash_redirecting’, 
during research stages we concluded that the two features had a big impact in deciding 
whether a case was phishing or not thus producing least accurate mean (93.5%). This 
shows that the features do in fact play a role in producing better accuracy means as not 
having them resulted in a poor output. My findings showed us that this model works best 
when given all possibilities. The algorithm clearly has procedures in place that lead it to be 
optimized when as much data as possible is fed into it.   
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Decision Tree 
We initially predicted the decision tree to be among the 
less effective models for our dataset as although easy 
to interpret compared to the perceptron or support 
vector machine models, they can be prone to 
overfitting if the training data size is not large enough. 
The model is primarily used for classification rather 
than predicting continuous values and therefore 
performed well with our feature-rich dataset.  
We trained the model five times using different 
hyperparameters and encoded input variables. There 
are two criteria for deciding on how to split a decision 
tree, entropy and gini, both of which produced very 
similar results of around a 0.96 accuracy score. Due to 
the binary nature of our dataset, the standard scaler 
also produced almost identical results with an accuracy 
score of 0.963. Combining these configurations with the 
random splitter as opposed to the default best splitter 
also produced identical results. Figure 3 shows the 
confusion matrix most produced during these tests. 
Dropping having_Sub_Domain and 
double_slash_redirecting had little effect on the results, 
with accuracy dropping to 0.933 (figure 4). Testing this 
model against a dataset where all 0’s have been replaced with -1’s also yielded an accuracy 
of 0.933. 
 
Naive Bayes 
This model was trained four times through the course 
of our exploration. The Gaussian model was initially 
used and had an initial accuracy score of 0.58 (See 
figure 5) which increased to 0.69 (figure 7) by omitting 
having_Sub_Domain and double_slash_redirecting 
columns and retraining it. 
Out of the two variants, Bernoulli had the highest 
accuracy score of 0.9 (figure 6). This was expected due 
to it being suited for binary values. Further tests with 
this classifier included training it with the edited dataset 
which consists of only 1s and -1s produced results with 
no notable change to the accuracy score. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Confusion matrix for decision tree 
trained with default dataset and 
configuaration. 

Figure 4: Confusion matrix for decision tree 
trained with edited dataset. 

Figure 5: Confusion matrix for Gaussian Naive 
Bayes with default dataset and configuration. 

Figure 7: Confusion matrix of Gaussian Naive 
Bayes with edited dataset 

Figure 6: Confusion matrix of Bernoulli Naive Bayes 
with default dataset 
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4. Evaluation and Conclusion 
 
Our dataset provided very few formatting challenges - however, the non-continuous nature 
of the datapoints affected our predictions for certain models, notably the linear regression 
model (which was expected to perform poorly) achieved our success criteria of 90%, with 
92% accuracy without any major data processing beforehand. Most of our experimentation 
with the data thus centered around dropping whole columns before splitting the dataset into 
training and validation sets. As previously mentioned, several overlapping features proved to 
be a problem when trying to determine features to drop and experiment on. We found two 
optimal columns to drop (having_Sub_Domain and double_slash_redirecting) which were 
found to have strong correlations to phishing websites (non-phishing and phishing 
respectively). This change was also applied alongside standardization attempts by changing 
all 0s in the dataset to –1s. Notable accuracy improvements were observed in the support 
vector machine and Naïve Baye models with an 87% to 92% and 59% to 68% increase 
respectively. In other models, results either did not change or decreased slightly. 
 
In the end, we were left with results of varying degrees of accuracy for each model. Most of 
our models achieved our set accuracy target of 90%. Among these, the perceptron and 
support vector machine models which had performed poorly on our initial dataset but worked 
better in further tests resulting from exploration of our data. The models that performed best 
with our dataset were the random forest and decision tree methods, both predicting results 
with 97% and 96% accuracy respectively on the unedited dataset (save for the id column 
being dropped). These top models center around the splitting of features into categories. 
Our data, being largely binary in nature, facilitated this process along with the considerable 
number of features. 
 
Returning to our initial questions, the use of decision trees proved to be the most effective 
model for predicting whether a URL points towards a phishing website. Given that its 
ensemble method, the random forest is used to improve accuracy, this can be considered 
the optimal model to use. Through our subsequent evaluations of the dataset, we identified 
features relating to aesthetic characteristics of the URL - namely whether a subdomain is 
present instead of just a public IP address and whether there are double slashes “//” present 
– were the most important features for identifying what constitutes as a phishing URL. 
Finally, as mentioned above, testing our models against an edited dataset (replacing 0’s with 
-1’s) did not produce a notable change in accuracy save for the SVM and Naïve Bayes 
models.  
 
Finally, due to our 11055 entries, we chose the holdout validation approach for most of our 
tests. Following the successful 32% increase in accuracy for the perceptron model after 
applying k-fold cross validation, it would be suggestable to test this approach with other 
models. 
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