
 1

IN3062: Introduction to AI

Exploration of the effectiveness of varying machine learning models on a phishing-
based dataset.

Zainab Mayet

Vijay Kesireddy
Andreas Salcedo-Cespedes

Shiven Saini

Link to github: https://github.com/saini-shiven/IntroToAIGroup1

 2

1. Introduction
The "domain" we chose was that of Cyber Security - specifically "Phishing" and the
classification of a website's URL as one that points to a phishing or non-phishing website.
Our dataset is a collection of features of various website URLs and whether they're
indicative of a phishing website or not. This is represented by one of three values: -1 for
"indicative of a phishing website", 0 for "suspicious" and 1 for "indicative of a non-phishing
website". These features include classifiers like “having_IPhaving_IP_Address” (If an IP
address is used as an alternative of the domain name in the URL, such as
“http://125.98.3.123/fake.html”), “double_slash_redirecting” (examining where in the URL a
“//” appears, as its position is indicative of if the URL is secure or not), etc.
“Phishing” refers to the practice of sending fraudulent snippets of digital communication
(SMS messages, emails, phone calls, etc.) with the purpose of inducing individuals into
revealing sensitive personal information – be it anything from passwords to credit card
numbers (phishing.org, n.d.). The main questions we’d be exploring in this report would be:
“What features of a URL (if any) are the most useful for predicting if said URL points to a
phishing website?”, as well as “What is the most effective model for predicting if a URL
points towards a phishing website?”. From these questions, we aim to achieve the
production of an array of effective AI models that can generalise our dataset to a high
degree of accuracy – as well as figuring out what features are the most important for each
model’s generalisation. The outputs we expect differ from model to model (the specific
models we’re going to be using will be expanded on more in our “method” section), but the
ideal accuracy for each will be anything above 90%.

As said above, an initial run of our dataset showed that all features for each URL (or row)
have been scored one of three ways; -1 for “indicative of a Phishing URL”, 0 for “suspicious”
and 1 for “Indicative of a non-phishing URL”. We found that “0” didn’t appear nearly as much
as “-1” or “1” (due to this, we’ll investigate what removing “0” and replacing it with “-1” will do

for our model’s accuracy), and no 0’s
were present in the “results” column. We
found that out of the 11055 entries
present in the dataset, 56% were classed
as “non-phishing” whilst 44% were
classed as “phishing”. We took this as a
good sign, as a close to equal result
dataset wouldn’t present many
challenges in terms of biases/skews.
We also looked through our dataset for
any missing values, or repeating rows;

we found our data contained neither “NaN”/Non-applicable data (essentially any data that
doesn’t fit into the 1, 0, -1 scoring system), nor any repeating/duplicate entries (I.e. rows).
Looking through each feature individually (by way of excel data manipulation tools and
bolstered by the ‘.value_counts()’ function) we found that the most important feature for
classifying something as “non-phishing” was “having_sub_domain” (whether or not the URL
pointed to a website under a sub-domain) – out of the 6157 total URLs classified as a non-
phishing website, 5630 were scored as “indicative of a non-phishing website”. Adversely, all
the 4898 total URLs classified as phishing were scored as “indicative of a phishing website”
in the “double_slash_redirecting” feature. Subsequently, we’ll focus on how the exclusion of
these two features contribute to our models’ accuracy.

 3

2. Method
One of the methods we decided to use that allows for the solving of regression and
classification problems is known as K-Nearest Neighbor (KNN). KNN includes advantages
such as the implementation being easy and quite straightforward. Additionally, a model prior
to implementation isn't required to be built, thus not needing to tune several parameters or
determine further assumptions. KNN is also quite versatile as it can be used for data that is
either regression or classification. However, one fall back to this model is its computation
time seems to be proportional to the number of features that is acting on. The model will
have access to our phishing dataset which would ultimately use it output a result. In this
case the model would analyze a new piece of data input and look at its surroundings data to
produce a result - i.e, is it phishing or not. For this model the dataset will be kept in its raw
form and will analyze the different columns whilst initiating a target, in this case ‘result’. The
data will need to ensure it is ‘fitted’ correctly to its data, meaning the line of best fit should
run through the data as opposed to it being spread and omitted as a whole. Finally, when
the code is tested a prediction table will be displayed and the accuracy will also be shown.
Judging by the accuracy we could conclude whether the model is ideal for the dataset and
can be used to predict whether a case is phishing or not.

Random Forest is another supervised machine learning algorithm which expands and
combines numerous decision trees essentially creating a ‘forest’. Once again, this model can
be used for both regression and classification problems. Some advantages include its
efficiency, simplicity (especially users that are beginners to SML and modelling), accuracy
and versatility. A drawback to random forest can be its need for mass amount of memory
(thus resulting in a large computation time). Since it uses a variety of decision trees much
more memory is required thus decreasing its speed. In conclusion although it is slow it
produces increased accuracy in its results. For our project we will have the model take in the
phishing dataset and select all columns aside from the target (‘result’). Unlike KNN, Random
Forest will take into account all pieces of data. Using this, the model should be able to
calculate whether the case is phishing or not. Once again, the model produces a line of best
fit in accordance with the data. To evaluate this model, we will observe the accuracy, this
well give us a clear indication of how useful the model is and much it can be relied on to
create predictions

The next supervised machine learning algorithm is Support Vector Machines (SVM) which
we used for our classification dataset. There are a variety of advantages for SVM models.
Firstly, it is able to establish the best separating hyperplane in order to submit an accurate
prediction. It is also ideal for high dimensional data and is relatively memory efficient. Finally,
as it is specialized for classification problems it integrates well with our dataset.
Disadvantages can include that the model does not work very well with significantly bigger
datasets. It may also prove to be not very accurate in comparison to other models as our
data contains a large number of overlapping data points. The high margins will require
numerous calculations to take place. The task of this model is to take into account two
parameters to produce an output, ‘phishing’ / ‘not phishing’. From this task, we will be able to
observe the effectiveness of the SVM model when tested against this large dataset. The
dataset was prepared by searching for missing or corrupt values and removing them where
applicable. We must also experiment with which kernel to use on the model. To evaluate this
model, we will be assessing its accuracy against both our original dataset and our edited
dataset (where all 0's have been replaced with -1's).

Another model used in supervised learning is perceptron. It aids in solving classification
problems and helps classify data that's been input. The advantage of perceptron is that it
can help solve non-linear problems. It can work with both big and minimal datasets whilst
having the accuracy remain constant. It can also rapidly produce a prediction after its
training. For muti-layered perceptron models the computations may become quite time
consuming - thus, we'll consider only using a single-layer perceptron. On top of this, being

 4

able to predict how the dependent variables affects an independent variable becomes quite
tricky. In addition to the previous drawbacks, the model's ability to generalize depends
heavily on the training’s quality/quantity. This model should be able to produce a high level
of accuracy whilst predicting against our test set. To prepare the dataset for this model, we
performed an initial run of the input values - perceptions are suited to large datasets so not
much had to get cut down, we just had to ensure the dataset was clean (without
missing/corrupt values). To evaluate this model, we'll have it perform it's training twice; once
against the original dataset, and once against a dataset where all "0"s have been replaced
with "-1"s - it's effectiveness will be evaluated against its ability to surpass our set success
rate of 90%.

Decision Trees used in supervised learning are very popular with classification problems as
well as predictions again, being quite ideal for our chosen dataset. Decision trees can be
compared to flow charts in the sense that a step-by-step procedure is taken before reaching
the next appropriate node. Using decision trees is useful as minimal computation is required
to produce a result. It is also suited to categorical variables which our dataset is consistent
with. Some disadvantages can include common errors when there are several classes and
limited training data. With our dataset we can assume there will be numerous branches as
there are various characteristics. This model should be able to perform well with our feature-
rich dataset. From this model, we will be able to observe a decision tree being created that
can generalize the data and make predictions with decent accuracy. We will also see how
the accuracy of predictions is affected by using different hyperparameters such as gini and
entropy splitting criteria. The dataset was prepared by dropping the id column as it is unique
for every datapoint and checking for any missing values. To evaluate this model, we will
generate confusion matrices to visualize the proportion of true predictions against false ones
and make use of sklearn’s metrics library by outputting the accuracy score for each test.

Naïve Bayes is another supervised machine learning algorithm used for a variety of
classification problems. The advantage of naïve bayes is that it isn’t very complicated and is
very quick in producing a result whilst working well with text classification. With a real-life
example naïve bayes isn’t very ideal as features are not necessarily independent therefore
making this algorithm less accurate. This model should be able to accurately predict whether
a data sample is classed as a phishing website or not based on prior knowledge about the
class label. From this model we will be able to observe predictions made “naively” with less
regard to relations between features. The dataset was prepared by dropping the “id” column
and our two most biased columns. Another training and testing process will be done with
data that contains -1s replaced with 0 on all features. We have the option of two main
variants of the model, Gaussian and Bernoulli. The latter being optimal for binary data and
should produce optimal results. To evaluate this model, we will produce a confusion matrix
and compare the accuracy of our results to our target of 90%.

 5

3. Results

Perceptron
The perceptron model initially seemed most suited to our
data due to its suitability to boolean values (unsw, n.d.) - our
dataset is primarily binary values (1 representing a non-
phishing URL and -1 representing a phishing URL).
We encoded our data by using all columns and features,
splitting the test data and training data to a 1:4 ratio. Training
this model pre-standardisation (standardisation being the
process of converting data to a common format to enable
users to process and analyse it (Sisense, n.d.)) only
produced a 55% accuracy (see initial confusion matrix) - due
to this, coupled with the performance of our other models,
we've set our success criteria to any accuracy above 90%.
However, once standardisation and "K-fold" cross validation
(the exercise of training several machine learning models on
subsets of the training data and evaluating their generalisation
on the test data) were applied, accuracy rose to between 90%
and 95% for each fold (see appropriate confusion matrix).
Note that our "k" count (the number of subsets we used) was
5, and raising that value yielded no significant increase in
accuracy. Utilising this model against our edited dataset (i.e.,
replacing all 0’s with -1’s) doesn’t yield much difference in
accuracy, just 1% less accurate.

SVM

The SVM model seemed one
well suited to our data due to its suitability for classification -
specifically high dimensionality data (Solarzano, 2019), which
our dataset is.
 We encoded our data by using all columns and features,
splitting the test data and training data to a 1:4 ratio.
Originally, we were using a 'linear' kernel on my entire
dataset with a test sample of 50%. This only yielded a 55%
accuracy, which we've found was mainly due to the size of
our dataset; the SVM model is not suited to large datasets
with too many overlapping features (Laparna, 2020), which
unfortunately is a characteristic of our data. To combat this,
we took a slice of our data (reducing 11055 items to 400),
and re-ran the model with an 'rbf' (Radial Basis Function)

kernel. The sliced data was initially a random sample of our
entire dataset, but this greatly reduced our accuracy (making
it more like our original 50%). To combat this, we took a slice
of data that was more indicative of our complete dataset; the
complete dataset’s final column (result) had a proportion of
44:56 for 1 and -1 values respectively. The 400 entries we
had selected had a proportion of 42:58 of the same values. As
these are similar, we decided to press on with the 400
selected values rather than the randomly selected values.
This produced a model that had an 86 - 90% output accuracy

(see appropriate confusion matrices). Again, we encoded
our variables via dropping all columns bar "results" and using
that as our X and using the results column as our Y (our

Figure 1: Perceptron confusion matrix
pre-standardisation

Figure 2:Perceptron confusion matrix
post-standardisation with validation

Figure 3: SVM confusion matrix with a
linear kernel

Figure 4: SVM confusion matrix with an
RBF kernel

 6

Target). Utilising this model against our edited dataset (replacing 0’s with -1’s) further
improved its accuracy, raising it from ~87% to >90%.

K - Nearest Neighbor
The k nearest neighbor model is ideal to display classified data. This model takes the data
closest to the pointer and assigns a group to the variable based on
the values nearest to it. During implementation we had set the KNN
length to 12, this had produced a mean accuracy of 53.7%. As this
result isn't very accurate, we decided to trial run different methods to
increase accuracy. Firstly, we began by increasing the KNN length
from 12 to 15. We thought by having more data, the machine would
be able to take it into account several more factors to
produce a greater accuracy, this in-fact worked as the
accuracy had improved to 54.3%. We then decided to
set the length to 17, seeing if the accuracy could improve
even more. However, this decreased the accuracy by 0.2
making it 54.1% in total. Thus, we concluded in keeping
the length as 15, as it produced the highest accuracy. As
our dataset consists of three possibilities 1 = ‘non-
phishing’ 0 = ‘maybe phishing’ and –1 = ‘phishing’, we thought it would be interesting to see
whether limiting the possibilities to two could perhaps increase the accuracy. This gave us
an accuracy of 54%, if the KNN length was 12 then this would have been quite an
improvement - however since the length was set to 15 the accuracy had ultimately
decreased. Finally, the last test made was to remove two features from the dataset being
‘having_Sub_Domain’ and ‘double_slash_redirecting’. Overall producing an accuracy of
53.4%, being the lowest, thus concluding that having a slightly higher KNN length can assist
in producing the highest accuracy mean as well as highlight the importance of the
aforementioned features in classifying a phishing/non-phishing URL.

Random Forest
Random forest model produces some of the highest accuracy figures in comparison to other
models. This statement was proven to be true from my implementation and findings. Firstly,
this model was implemented with the original dataset which produced an incredibly high
accuracy being 96.3%. Similarly to the KNN model we wanted to test whether this accuracy
could be increased further. We proceeded to test it with the dataset that omits ‘0’s. To our
surprise this resulted in a slightly less accurate mean of 93.8%, implying that this model
requires as much data in order to make an accurate verdict. Finally, we tested it against the
dataset without the two features ‘having_Sub_Domain’ and ‘double_slash_redirecting’,
during research stages we concluded that the two features had a big impact in deciding
whether a case was phishing or not thus producing least accurate mean (93.5%). This
shows that the features do in fact play a role in producing better accuracy means as not
having them resulted in a poor output. My findings showed us that this model works best
when given all possibilities. The algorithm clearly has procedures in place that lead it to be
optimized when as much data as possible is fed into it.

 7

Decision Tree
We initially predicted the decision tree to be among the
less effective models for our dataset as although easy
to interpret compared to the perceptron or support
vector machine models, they can be prone to
overfitting if the training data size is not large enough.
The model is primarily used for classification rather
than predicting continuous values and therefore
performed well with our feature-rich dataset.
We trained the model five times using different
hyperparameters and encoded input variables. There
are two criteria for deciding on how to split a decision
tree, entropy and gini, both of which produced very
similar results of around a 0.96 accuracy score. Due to
the binary nature of our dataset, the standard scaler
also produced almost identical results with an accuracy
score of 0.963. Combining these configurations with the
random splitter as opposed to the default best splitter
also produced identical results. Figure 3 shows the
confusion matrix most produced during these tests.
Dropping having_Sub_Domain and
double_slash_redirecting had little effect on the results,
with accuracy dropping to 0.933 (figure 4). Testing this
model against a dataset where all 0’s have been replaced with -1’s also yielded an accuracy
of 0.933.

Naive Bayes
This model was trained four times through the course
of our exploration. The Gaussian model was initially
used and had an initial accuracy score of 0.58 (See
figure 5) which increased to 0.69 (figure 7) by omitting
having_Sub_Domain and double_slash_redirecting
columns and retraining it.
Out of the two variants, Bernoulli had the highest
accuracy score of 0.9 (figure 6). This was expected due
to it being suited for binary values. Further tests with
this classifier included training it with the edited dataset
which consists of only 1s and -1s produced results with
no notable change to the accuracy score.

Figure 3: Confusion matrix for decision tree
trained with default dataset and
configuaration.

Figure 4: Confusion matrix for decision tree
trained with edited dataset.

Figure 5: Confusion matrix for Gaussian Naive
Bayes with default dataset and configuration.

Figure 7: Confusion matrix of Gaussian Naive
Bayes with edited dataset

Figure 6: Confusion matrix of Bernoulli Naive Bayes
with default dataset

 8

4. Evaluation and Conclusion

Our dataset provided very few formatting challenges - however, the non-continuous nature
of the datapoints affected our predictions for certain models, notably the linear regression
model (which was expected to perform poorly) achieved our success criteria of 90%, with
92% accuracy without any major data processing beforehand. Most of our experimentation
with the data thus centered around dropping whole columns before splitting the dataset into
training and validation sets. As previously mentioned, several overlapping features proved to
be a problem when trying to determine features to drop and experiment on. We found two
optimal columns to drop (having_Sub_Domain and double_slash_redirecting) which were
found to have strong correlations to phishing websites (non-phishing and phishing
respectively). This change was also applied alongside standardization attempts by changing
all 0s in the dataset to –1s. Notable accuracy improvements were observed in the support
vector machine and Naïve Baye models with an 87% to 92% and 59% to 68% increase
respectively. In other models, results either did not change or decreased slightly.

In the end, we were left with results of varying degrees of accuracy for each model. Most of
our models achieved our set accuracy target of 90%. Among these, the perceptron and
support vector machine models which had performed poorly on our initial dataset but worked
better in further tests resulting from exploration of our data. The models that performed best
with our dataset were the random forest and decision tree methods, both predicting results
with 97% and 96% accuracy respectively on the unedited dataset (save for the id column
being dropped). These top models center around the splitting of features into categories.
Our data, being largely binary in nature, facilitated this process along with the considerable
number of features.

Returning to our initial questions, the use of decision trees proved to be the most effective
model for predicting whether a URL points towards a phishing website. Given that its
ensemble method, the random forest is used to improve accuracy, this can be considered
the optimal model to use. Through our subsequent evaluations of the dataset, we identified
features relating to aesthetic characteristics of the URL - namely whether a subdomain is
present instead of just a public IP address and whether there are double slashes “//” present
– were the most important features for identifying what constitutes as a phishing URL.
Finally, as mentioned above, testing our models against an edited dataset (replacing 0’s with
-1’s) did not produce a notable change in accuracy save for the SVM and Naïve Bayes
models.

Finally, due to our 11055 entries, we chose the holdout validation approach for most of our
tests. Following the successful 32% increase in accuracy for the perceptron model after
applying k-fold cross validation, it would be suggestable to test this approach with other
models.

 9

References

Laparna, G. (2020, December 22). Support vector machine in machine learning. Retrieved
from Geeksforgeeks.org: https://www.geeksforgeeks.org/support-vector-machine-in-
machine-learning/

phishing.org. (n.d.). What is phishing? Retrieved from Phishing.org:
https://www.phishing.org/what-is-phishing

Sisense. (n.d.). Data Standardization. Retrieved from Sisense.com:
https://www.sisense.com/glossary/data-standardization/

Solarzano, M. (2019, May 16). Working with high dimensional data. Retrieved from
medium.com: https://medium.com/working-with-high-dimensional-data/working-with-
high-dimensional-data-9e556b07cf99

unsw. (n.d.). Single Layer Tutorial. Retrieved from http://www.cse.unsw.edu.au/:
http://www.cse.unsw.edu.au/~cs9417ml/MLP1/tutorial/singlelayer.htm

	References

